
Email : hyeonggyugwon3@gmail.com

Phone : +82-10-8786-9260

GitHub : @kwondongwoo0424

Dongwoo Kwon | Frontend Developer

A Developer Who Embraces Failure

Hello, I am Dongwoo Kwon, a junior developer who believes that failure is

essential for growth.

I actively work with frontend technologies and enjoy developing with

Agile methodologies and the MVP approach.

I have experience across the full development lifecycle: service planning, design,
development, deployment, and operation.

I continuously challenge myself to become a better developer, learning and

growing from failures.

When working on projects, I maintain product ownership while consistently

learning and improving UX.

Like Nietzsche's quote, "What does not kill me makes me stronger", I use failure as

a stepping stone to become a better developer.

Skills
React TypeScript JavaScript Next.js HTML

styled-components Tailwind CSS SCSS CSS

Storybook TanStack Query Zustand

GitHub Figma Vercel GitHub Pages

Java Spring Boot Express.js Node.js pandas

Education
Daegu Software Meister High School Mar 2024 - Feb 2027

(Expected Graduation)

Relevant Coursework
Python Programming / Web Programming Fundamentals / Database Programming /

Data Structures / Artificial Intelligence Fundamentals / Software Engineering /

Java Programming / Web Programming / Networking / Advanced Web Programming /

Advanced Java Programming

mailto:hyeonggyugwon3@gmail.com
https://github.com/kwondongwoo0424

Projects
Featured Project

Sync Desktop
AI-powered project management SaaS for collaboration between

non-developers and developers

Team Project

7 members

React TypeScript Electron styled-components TanStack Query Zustand

Desktop app development / UI design / Design system implementation / Landing page
development / SSE-based real-time term interpretation feature development

Side Projects

DIA
GPA calculation service for Daegu Software Meister High School

Team Project

4 members

React TypeScript styled-components React Context API

Grade calculation page development / Grade calculation algorithm modularization

C ColorVerse
Web service for color palette recommendations

Personal Project

Solo

React styled-components Express.js OpenAI API

Express.js server implementation / OpenAI API integration and prompt engineering

Flick
Digital currency-based real-time transaction and settlement platform

for school festival booth operations

Team Project

5 members

Next.js Tailwind CSS TypeScript pnpm

Admin page real-time booth ranking system development

External Project Contributions

Legacy web
"Learning Korean Culture and History through Games" web/app-based educational service

React TypeScript styled-components

OAuth button component refactoring (PR #75 merged) /

Identified and reported security vulnerability in hardcoded Kakao API keys

Starthub web
AI-powered personalized startup support information service

React TypeScript styled-components

UX improvement with optimistic updates (PR #199 merged)

Featured Project

Sync Desktop Mar 2025 - Oct 2025

AI-powered project management SaaS for collaboration between non-developers and developers

Document Page - Auto ERD generation

based on functional specifications

DeepSync - Automatic issue content correction

Overview
An AI-powered project management desktop application designed to address communication
issues and collaboration inefficiencies caused by the technical knowledge gap between

non-developers (such as designers and product managers) and developers.

The core objective is to bridge the knowledge gap through AI assistance and provide a real-time
collaborative environment for team members.

Key Challenges
- Non-developers struggle to articulate requirements due to limited technical knowledge

- Developers miss business context, leading to communication overhead

- Frequent misunderstandings, time waste, and repetitive work in collaboration

Solution
Enhance non-developers' technical understanding through AI while minimizing communication
costs with real-time collaboration features.

Key Features
- Drag-based technical term interpretation for non-developers

- AI chatbot with project context awareness for personalized assistance

- Real-time collaborative

- Markdown documentation and AI-powered ERD generation from functional specifications

Team
7 members total

Frontend: 4 (including myself) | Backend: 3 | Design: 2 (including myself)

My Role: Frontend Developer & UI/UX Designer

Tech Stack
React
Chosen for rapid development of dynamic, stateful user interfaces

TypeScript
Ensures type safety essential for team collaboration and maintainability

Electron
- Leverages familiar web technologies for desktop app development

- Provides cross-platform support for consistent UX across macOS and Windows

- Maintains browser-like development workflow for enhanced productivity

styled-components
Manages component-level styling with consistency

Key Activities

UI/UX Design

Document Page Issue Page

Designed user-centric interfaces leveraging featureFigma's Auto Layout

Design System Development (sync-design-system)

Design System Implementation (Figma-based)

sds published on npmjs

Inconsistent UI components hindered maintainability and reusability.

- Extracted 15 reusable common components
- as (@sync-design-system) for team-wide sharingPublished npm package
- Provided and via component documentation usage guidelines Storybook

→ and through systematic component designImproved development efficiency UI consistency

Agile Methodology Implementation

Daily todo tracking (via Discord)

Weekly sprint retrospectives

During the initial 2 months of our 7-month project, lack of clear milestones led to feature delays
and difficulty tracking team progress.

- : Thursday demos and retrospectives, Friday sprint planningImplemented weekly sprints
- Managed backlog, sprint boards, and retrospectives via Notion
- Shared daily reminders and blocking issues through Discord

→ Gained experience improving schedule predictability and team productivity in long-term projects

Key Activities

UX Improvements

Reduced Issue Page Loading Time with React Query Caching

API re-fetching occurred on every navigation between issue list and detail pages

→ Average 2-second loading time with repeated requests increasing server load

- Implemented for automatic issue React Query data caching
- Set 2-minute staleTime: fresh data displays instantly without re-fetching (short staleTime used

 due to frequently changing issue data)

→ and simultaneously through caching strategyImproved performance user experience

Improved Task Check Responsiveness with Optimistic Updates

0.5-1s delay occurred while waiting for server response

when checking tasks as complete → degraded user experience

Implemented optimistic updates React Query for instant UI response

- from on averageReduced perceived response time 800ms to 0ms
- Automatic rollback on network failure with error toast notifications

Task list with

optimistic updates applied

Removed Unnecessary Skeleton UI

Skeleton UI on workspace cards caused brief flash as it appeared and
disappeared during loading

- Chrome DevTools showed average API response time of 180ms
- Skeleton UI vanished immediately after appearing,

 creating visual noise

→ Removed skeleton UI and rendered content immediately upon data

 arrival for a clean, flicker-free loading experience

Workspace page

with skeleton UI applied

Beta Test Landing Page (sync introduce) Development

- Built beta signup page using GitHub Pages with custom domain
- Provided Windows/macOS installers via GitHub

 Releases-based deployment

→ Gained experience establishing and executing an
 for product validation

efficient beta

 distribution strategy

Sync-introduce

Key Activities

Improved Organic Search Traffic through SEO Optimization

Optimized landing page (Sync-introduce) SEO to improve search visibility and organic traffic for
Sync Desktop

- with sitemap.xml, robots.txt, and meta tag optimizationEnhanced search engine crawling
- Applied custom domain and achieved Lighthouse SEO score of 100
- Secured organic user acquisition channels through technical SEO implementation

→ Gained understanding of search engine crawling mechanisms and

 technical implementation methods

Lighthouse measurement results

Troubleshooting

Optimizing Excessive Re-rendering in SSE Streaming Responses

Problem
While implementing real-time AI word explanations via SSE when users drag text, the UI stuttered
and lagged during response display.

Root Cause
Excessive re-rendering from setState calls on every chunk received

- n chunks received → n re-renders triggered
- Virtual DOM generation and diffing process executed per render

→ Performance degradation Original code

Solution Process
Considered two approaches: Throttling vs. Debouncing

Throttling
- Pros: Consistent, smooth typing animation with regular render intervals
- Cons: Unnecessary renders occur even when no new chunks arrive

Debouncing
- Delays rendering while chunks arrive continuously
- Executes single render only after no new chunks for set duration

While Throttling provided smoother animation, it had lingering performance issues from
unnecessary renders. Debouncing, though slightly less smooth in typing effect, drastically
reduced render count and most effectively resolved UI stuttering.

Final approach: Debouncing selected

Implementation
Debouncing + useRef Buffering Pattern

use Ref as intermediate buffer → accumulates data without re-
rendering

50 ms Debouncing → delays rendering during continuous chunk
arrival

Cancel previous timer → setState called only once based on last
chunk

→ Chunks accumulate in buffer in real-time, but screen updates only
when no additional chunks arrive for 50ms

Code with Debouncing applied

Results & Learnings
- Resolved UI stuttering by reducing setState call frequency
- Gained deep understanding of React rendering mechanisms
- Learned to clearly differentiate Throttling vs. Debouncing and apply appropriately based on context

Reflection & References

Reflection
Through this 7-month team project, I learned that teamwork doesn't happen automatically.

We faced conflicts from different experiences and struggled when intentions weren't fully
understood. However, open communication quickly resolved misunderstandings, and I learned
that the willingness to understand each other matters more than problem-solving itself.

This project taught me the value of growing together as a team, not just building features.

Additional Activities
FIX 2025 Korea ICT Convergence Expo Booth Operation Oct 22-25, 2025
3rd Place, 2025 ITCE Project Competition Oct 24, 2025

References
Sync-Desktop Source Code: https://github.com/AICT-SYNC/sync-desktop
Sync Design System Source Code: https://github.com/AICT-SYNC/sync-design-system
Sync Design System NPM: https://npmjs.com/package/sync-design-system
Sync Introduce Source Code: https://github.com/AICT-SYNC/sync-introduce
sync-saas Website (Service Ended): https://sync-saas.com

https://github.com/AICT-SYNC/sync-desktop
https://github.com/AICT-SYNC/sync-design-system
https://npmjs.com/package/sync-design-system
https://github.com/AICT-SYNC/sync-introduce
https://sync-saas.com

Side Project

DIA Aug 9 - Sep 9, 2025

GPA Calculation Service for Daegu Software Meister High School

Key Responsibilities
- GPA calculation page development
- Grade calculation algorithm modularization

Tech Stack
React TypeScript styled-components

References
Frontend Source Code: https://github.com/EntryCNS/DIA
Live Website: https://trydgsw.com

DIA Grade Entry Interface

Overview
A simple, intuitive web service that calculates total scores when students enter their academic
grades, based on the grading criteria for Daegu Software Meister High School's first-round
admissions.

Team
4 members total

Frontend: 4 (including myself)

Key Learnings

Global State Management with React Context API
Developed 3-step form flow: student type selection → grade input → result confirmation

- Props passed through 5-6 components (5-level depth)
- Required modifying all 6 files when adding new data fields

→ with Centralized global state management React Context API

- Real-time sync: shared state across multiple components
- : 5-level passing → direct accessEliminated Props Drilling

→ Built systematic state management architecture for improved maintainability

https://github.com/EntryCNS/DIA
https://trydgsw.com

Why React Context API over Redux/Zustand

- Project requirements were simple ("share form data across pages"), not requiring Redux's

 action/reducer structure or Zustand's selector-based architecture
- Low state change frequency meant Redux/Zustand's granular state separation wasn't needed;

 Context API provided sufficient performance

Side Project

C ColorVerse Jun 21-25, 2025

Color Palette Recommendation Service

Key Responsibilities
- Express.js server implementation

Tech Stack
React styled-components Express.js OpenAI API

References
Source Code: https://github.com/kwondongwoo0424/ColorVerse
Notion Docs: https://buly.kr/GvoBKj0

Main interface

Overview
A web service that helps designers and developers quickly establish consistent color systems and
discover harmonious color combinations with AI assistance.

Team
Solo project

Key Learnings

RESTful API Server with Express.js
- Integrated OpenAI API via /api/chat POST endpoint
- Implemented frontend-backend communication with CORS configuration

OpenAI API Integration & Prompt Engineering
- Integrated GPT-3.5-turbo model using official OpenAI Node.js SDK (openai)
- Implemented complete API flow: authentication → request composition → response handling

https://github.com/kwondongwoo0424/ColorVerse
https://buly.kr/GvoBKj0

Side Project

Flick May 5-20, 2025

Digital Currency-Based Real-Time Transaction and Settlement Platform for School Festival Booth Operations

Key Responsibilities
- Admin page development

Tech Stack
Next.js tailwind CSS TypeScript

References
Web Source Code: https://github.com/EntryCNS/flick-web

Flick Admin Dashboard Page

Overview
Flick is a point-based transaction service designed for payments at on-campus festival booths.

The previously developed v1, created by senior students, had several usability issues

related to its QR code payment flow.

To address these limitations and enhance the overall user experience, we newly developed Flick v2.

Team
5 members total

Frontend: 2 (including myself) | Backend: 2 | Full-Stack: 1

My Role: Frontend Developer

Web Development

Developed a real-time booth ranking system

- Built a real-time revenue ranking visualization using Chart.js and

 WebSocket
- Implemented WebSocket reconnection logic to ensure stable and

 reliable real-time data communication

Admin Ranking Page

Key Learnings

Codebase Integration and Management Efficiency

Adopted a Turborepo- and pnpm Workspace–based monorepo

- @repo/ui: Centralized shared components to eliminate code

 duplication
- pnpm hard links: Reduced node_modules storage usage
- workspace:* protocol: Automated dependency management

 across packages

→ Gained hands-on experience achieving both productivity and consistency in a

 multi-project environment

Flick-web Project Structure

https://github.com/EntryCNS/flick-web

External Project Contributions

Legacy (legacy-web)

Overview & Project Introduction
Legacy-web is a web and mobile–based learning service developed with the goal of teaching
Korean culture and history through games.

The project involved a total of seven members, with the web team consisting of two developers.

As an external contributor, I identified areas for improvement in code quality and security and
contributed accordingly.

Contribution

Refactoring of the OAuth button component
Issues Identified

- Google and Apple login buttons were componentized, while the Kakao login button was

 implemented directly within a page
- This caused inconsistency in the OAuth button structure and reduced maintainability and

 reusability

Improvements Implemented

- Extracted the Kakao login button into a dedicated component
- Unified the component structure to match existing OAuth login buttons

Results

- Achieved structural consistency across OAuth login buttons
- Improved UI component reusability
- Enhanced maintainability and overall developer experience (DX)

References
Pull Request: https://github.com/TeamDetail/legacy-web/pull/75
Repository: https://github.com/TeamDetail/legacy-web

https://github.com/TeamDetail/legacy-web/pull/75
https://github.com/TeamDetail/legacy-web

External Project Contributions

Starthub (starthub-web)

Overview & Project Introduction

StartHub is an AI-driven service that provides personalized startup support information.

The web application is built with React and TypeScript and is maintained as

a public GitHub repository.

While using the service, I identified a user experience issue and contributed as an external
contributor to address it.

Contribution

Applied optimistic updates to the “Like” feature on the announcement detail page

Issues Identified

- The UI did not respond until the server returned a response when liking or unliking an

 announcement
- Users could not easily confirm whether their click was successfully processed,

 leading to poor UX
- The perceived delay became more severe in unstable network conditions

Improvements Implemented

- Utilized React Query’s useMutation
- Applied optimistic updates to immediately reflect UI state changes before server responses
- Implemented rollback logic on request failure to ensure reliability

Results

- Immediate UI feedback on click, significantly improving user experience
- Smooth and natural interactions even under unstable network conditions
- Delivered a robust like feature that handles both success and failure scenarios

Impact

This improvement meaningfully enhanced the user experience on the announcement detail page
by providing instant feedback after user interactions, greatly increasing perceived
responsiveness.

It was a valuable experience in identifying and solving real user-centric problems, contributing
directly to overall service quality.

References

Pull Request: https://github.com/JinInSaDaeCheonMyeong/starthub-web/pull/199
Repository: https://github.com/JinInSaDaeCheonMyeong/starthub-web

https://github.com/JinInSaDaeCheonMyeong/starthub-web/pull/199
https://github.com/JinInSaDaeCheonMyeong/starthub-web

Certifications & Others
23rd TOPCIT (Test of Practical Competency in ICT) - 527 points (Level 3) May 24, 2025

TOEIC Bridge - 76 Dec 23, 2024

Awards
3rd Place, 2025 ITCE Project Competition Oct 24, 2025

Academic Excellence Award in Physical Education Jul 22, 2025

Activities
SW Meister High School Joint Hackathon Participant Nov 5-7, 2025

FIX 2025 Korea ICT Convergence Expo - Booth Operator Oct 22-25, 2025

School Software Vibe Coding Hackathon Participant Jul 15-16, 2025

Narshar Project Participant
- Sync Desktop

Mar 17 - Oct 25, 2025

1:1 Native English Online Program May 13 - Dec 23, 2025 (Ongoing)

Library Committee Head Dec 2024 - Present

Admissions Interview Volunteer Oct 25, 2024

Narshar Project Participant Aug 20 - Dec 26, 2024

School Software Hackathon Participant Jul 17-18, 2024

1:1 Native English Online Program May 8, 2024 - Jan 8, 2025

Coding Test Competition Participant Apr 17, 2024

Smarteen App Challenge Participant Apr 2, 2024

CNS Programming Club Member Mar 14, 2024 - Present

Thank you for taking the time to review my portfolio.

I'm still learning and growing, but I'm committed to becoming

a better developer every single day.

