Dongwoo Kwon | Frontend Developer

Email : hyeonggyugwon3@gmail.com
Phone : +82-10-8786-9260
GitHub : @kwondongwoo00424

A Developer Who Embraces Failure

Hello, | am Dongwoo Kwon, a junior developer who believes that failure is
essential for growth.

| actively work with frontend technologies and enjoy developing with

Agile methodologies and the MVP approach.

| have experience across the full development lifecycle: service planning, design,
development, deployment, and operation.

| continuously challenge myself to become a better developer, learning and
growing from failures.

When working on projects, | maintain product ownership while consistently
learning and improving UX.

Like Nietzsche's quote, "What does not kill me makes me stronger", | use failure as
a stepping stone to become a better developer.

Skills

(React) (_Typescript) ((Javascript) (Nextjs) (HTML)
(styled-components) (" Tailwind css) (' scss) (css)
("storybook) (TanStack Query) (Zustand)

("GitHub) (_Figma) (" Vercel) (GitHub Pages)

(Java) (_springBoot) (_Expressjs) (' Nodejs) (pandas)

Education

Daegu Software Meister High School Mar 2024 - Feb 2027
(Expected Graduation)

Relevant Coursework

Python Programming / Web Programming Fundamentals / Database Programming /
Data Structures / Artificial Intelligence Fundamentals / Software Engineering /

Java Programming / Web Programming / Networking / Advanced Web Programming /
Advanced Java Programming

mailto:hyeonggyugwon3@gmail.com
https://github.com/kwondongwoo0424

Projects
Featured Project

Sync Desktop Team Project

Al-powered project management SaaS for collaboration between 7 members
non-developers and developers

(React) CTypeScript) (EIectron) (styled-components) (TanStack Query) (Zustand)

Desktop app development / Ul design / Design system implementation / Landing page
development / SSE-based real-time term interpretation feature development

Side Projects

DIA j
p— Team Project
GPA calculation service for Daegu Software Meister High School 4 members
CReact) CTypeScript) Cstyled-components) CReact Context APD
Grade calculation page development / Grade calculation algorithm modularization
ColorVerse Personal Project
Solo

Web service for color palette recommendations

(React) Cstyled—components) (Express.js) (OpenAI API)

Express.js server implementation / OpenAl APl integration and prompt engineering

Flick Team Project
Digital currency-based real-time transaction and settlement platform 5 members
for school festival booth operations

CNext.js) CTainind CSS) CTypeScript) Cpnpm)

Admin page real-time booth ranking system development

External Project Contributions

Legacy web

"Learning Korean Culture and History through Games" web/app-based educational service

CReact) CTypeScript) Cstyled-components)

OAuth button component refactoring (PR #75 merged) /
Identified and reported security vulnerability in hardcoded Kakao API keys

Starthub web

Al-powered personalized startup support information service

(React) (TypeScript) Cstyled-components)

UX improvement with optimistic updates (PR #199 merged)

Featured Project

Sync Desktop Mar 2025 - Oct 2025

Al-powered project management SaaS for collaboration between non-developers and developers

O]

Sync

T ® W Ea B e
PR

Document Page - Auto ERD generation DeepSync - Automatic issue content correction
based on functional specifications

Overview

An Al-powered project management desktop application designed to address communication
issues and collaboration inefficiencies caused by the technical knowledge gap between
non-developers (such as designers and product managers) and developers.

The core objective is to bridge the knowledge gap through Al assistance and provide a real-time
collaborative environment for team members.

Key Challenges

- Non-developers struggle to articulate requirements due to limited technical knowledge
- Developers miss business context, leading to communication overhead
- Frequent misunderstandings, time waste, and repetitive work in collaboration

Solution

Enhance non-developers' technical understanding through Al while minimizing communication
costs with real-time collaboration features.

Key Features

- Drag-based technical term interpretation for non-developers

- Al chatbot with project context awareness for personalized assistance

- Real-time collaborative

- Markdown documentation and Al-powered ERD generation from functional specifications

Team

7 members total
Frontend: 4 (including myself) | Backend:3 | Design: 2 (including myself)
My Role: Frontend Developer & UlI/UX Designer

Tech Stack

React
Chosen for rapid development of dynamic, stateful user interfaces

TypeScript
Ensures type safety essential for team collaboration and maintainability

Electron

- Leverages familiar web technologies for desktop app development
- Provides cross-platform support for consistent UX across macOS and Windows
- Maintains browser-like development workflow for enhanced productivity

styled-components
Manages component-level styling with consistency

Key Activities
UI/UX Design

W P
718

R MRt HHERIZte] RS HE & ®
Fro. o

se®e

2] samszEan
e
nge.

<T@ 8 m

Z2HEHY

Sync 7ISEMIM (=]

oy 230

(S)
Document Page Issue Page

Designed user-centric interfaces leveraging Figma's Auto Layout feature

Design System Development (sync-design-system)

e —— Package :

e sync-design-system

‘; “, >"AE0| E2HS AIZ 3 ZsHs, AICT HIQILCE

m - T o hyeonggyu published 0.10.9 + a few seconds ago
_— % %

B ;.,_.‘. 5 sds published on npmjs

Design System Implementation (Figma-based)

Inconsistent Ul components hindered maintainability and reusability.

- Extracted 15 reusable common components
- Published as npm package (@sync-design-system) for team-wide sharing
- Provided component documentation and usage guidelines via Storybook

- Improved development efficiency and Ul consistency through systematic component design

Agile Methodology Implementation

o 8E 21U EEUE
A 9ENYBS U
=n OF 18U E#E U8
B 9% 252 BE U8
§ sai259
@ 88 28Y
= 118 13Y
e 118 20Y

Daily todo tracking (via Discord) O 1127

Weekly sprint retrospectives

During the initial 2 months of our 7-month project, lack of clear milestones led to feature delays
and difficulty tracking team progress.

- Implemented weekly sprints: Thursday demos and retrospectives, Friday sprint planning
- Managed backlog, sprint boards, and retrospectives via Notion
- Shared daily reminders and blocking issues through Discord

-> Gained experience improving schedule predictability and team productivity in long-term projects

Key Activities

UX Improvements

Reduced Issue Page Loading Time with React Query Caching

API re-fetching occurred on every navigation between issue list and detail pages
-> Average 2-second loading time with repeated requests increasing server load

- Implemented React Query for automatic issue data caching

- Set 2-minute staleTime: fresh data displays instantly without re-fetching (short staleTime used

due to frequently changing issue data)

- Improved performance and user experience simultaneously through caching strategy

Improved Task Check Responsiveness with Optimistic Updates

0.5-1s delay occurred while waiting for server response
when checking tasks as complete - degraded user experience

Implemented React Query optimistic updates for instant Ul response

- Reduced perceived response time from 800ms to Oms on average
- Automatic rollback on network failure with error toast notifications

Removed Unnecessary Skeleton Ul

Skeleton Ul on workspace cards caused brief flash as it appeared and
disappeared during loading

- Chrome DevTools showed average API response time of 180ms

- Skeleton Ul vanished immediately after appearing,
creating visual noise

-> Removed skeleton Ul and rendered content immediately upon data
arrival for a clean, flicker-free loading experience

Beta Test Landing Page (sync introduce) Development

- Built beta signup page using GitHub Pages with custom domain
- Provided Windows/macOS installers via GitHub

maw|E JjEot
D-2 2025.12.1.

UI/UX CIxtQ! 2|7
D-5 2025.12.4

Glo|EfH[o]A A7|a} MA|
D-1 2025.11. 30

Task list with
optimistic updates applied

Workspace page
with skeleton Ul applied

AIZ 7| HRHE S{ECH

Releases-based deployment Sy Pl LA 42 QO =

- Gained experience establishing and executing an efficient beta ==

distribution strategy for product validation

Sync-introduce

Key Activities
Improved Organic Search Traffic through SEO Optimization

Optimized landing page (Sync-introduce) SEO to improve search visibility and organic traffic for
Sync Desktop

- Enhanced search engine crawling with sitemap.xml, robots.txt, and meta tag optimization

- Applied custom domain and achieved Lighthouse SEO score of 100

- Secured organic user acquisition channels through technical SEO implementation

-> Gained understanding of search engine crawling mechanisms and
technical implementation methods

WRORD

Accessibility Best Accessibility Best
Practices Practices

Lighthouse measurement results

Troubleshooting
Optimizing Excessive Re-rendering in SSE Streaming Responses

Problem

While implementing real-time Al word explanations via SSE when users drag text, the Ul stuttered
and lagged during response display.

onChunk: (chunk) => {

Root Cause
if (currentWordRef.current !== word) {

Excessive re-rendering from setState calls on every chunk received return;
I
- n chunks received - n re-renders triggered

- Virtual DOM generation and diffing process executed per render serbefinltonforeviseprevisiehinkd;

-> Performance degradation Original code

Solution Process
Considered two approaches: Throttling vs. Debouncing

1. Throttling
- Pros: Consistent, smooth typing animation with regular render intervals
- Cons: Unnecessary renders occur even when no new chunks arrive

2. Debouncing

- Delays rendering while chunks arrive continuously
- Executes single render only after no new chunks for set duration

While Throttling provided smoother animation, it had lingering performance issues from
unnecessary renders. Debouncing, though slightly less smooth in typing effect, drastically
reduced render count and most effectively resolved Ul stuttering.

Final approach: Debouncing selected

onChunk: (chunk) =>

Implementation

if (currentWordRef.current !== word) {
tole

Debouncing + useRef Buffering Pattern [Et
1. useRef as intermediate buffer - accumulates data without re- R T S ST
rendeﬁng if (updateTimerRef.current) {

clearTimeout (updateTimerRef.current);

2. 50ms Debouncing - delays rendering during continuous chunk '

. updateTimerRef.current = setTimeout(() =>
arrival ;

if (currentWordRef.current === word) {

3. Cancel previous timer - setState called only once based on last setbefinition(definitionRef. current);
chunk

}, 50);

-> Chunks accumulate in buffer in real-time, but screen updates only Code with Debouncing applied
when no additional chunks arrive for 50ms

Results & Learnings

- Resolved Ul stuttering by reducing setState call frequency

- Gained deep understanding of React rendering mechanisms

- Learned to clearly differentiate Throttling vs. Debouncing and apply appropriately based on context

Reflection & References

Reflection

Through this 7-month team project, | learned that teamwork doesn't happen automatically.
We faced conflicts from different experiences and struggled when intentions weren't fully
understood. However, open communication quickly resolved misunderstandings, and | learned
that the willingness to understand each other matters more than problem-solving itself.

This project taught me the value of growing together as a team, not just building features.

Additional Activities

FIX 2025 Korea ICT Convergence Expo Booth Operation Oct 22-25, 2025
3rd Place, 2025 ITCE Project Competition Oct 24, 2025
References

Sync-Desktop Source Code: https://github.com/AICT-SYNC/sync-desktop

Sync Design System Source Code: https://github.com/AICT-SYNC/sync-design-system
Sync Design System NPM: https://npmjs.com/package/sync-design-system

Sync Introduce Source Code: https://github.com/AICT-SYNC/sync-introduce

sync-saas Website (Service Ended): https://sync-saas.com

https://github.com/AICT-SYNC/sync-desktop
https://github.com/AICT-SYNC/sync-design-system
https://npmjs.com/package/sync-design-system
https://github.com/AICT-SYNC/sync-introduce
https://sync-saas.com

Side Project
DIA

GPA Calculation Service for Daegu Software Meister High School

| DGSU! 4

Key Responsibilities
- GPA calculation page development
- Grade calculation algorithm modularization

Tech Stack
(React) CTypeScript) (styled—components)

References

Frontend Source Code: https://github.com/EntryCNS/DIA
Live Website: https://trydgsw.com

Overview

Aug 9 - Sep 9, 2025

oGsuw

Q= Q@i

SSYHES Sl TR,

s o

DIA Grade Entry Interface

A simple, intuitive web service that calculates total scores when students enter their academic
grades, based on the grading criteria for Daegu Software Meister High School's first-round

admissions.

Team

4 members total
Frontend: 4 (including myself)

Key Learnings

Global State Management with React Context API

Developed 3-step form flow: student type selection - grade input - result confirmation

- Props passed through 5-6 components (5-level depth)
- Required modifying all 6 files when adding new data fields

- Centralized global state management with React Context API

- Real-time sync: shared state across multiple components
- Eliminated Props Drilling: 5-level passing - direct access

-> Built systematic state management architecture for improved maintainability

Before (Props Drilling)

[App] - grades, setGrades, freeSem, attendance... (127§ props)
v

[Rzuter] - (1271 props 1CiE HE) [App]

[StudentWritePage]l - (127f props JtiE FHE)

[Btdy] props2 Mg, At o8t - (127 props ICHE HY)

[WtiteGrade] - grades, setGrades A2

[WtiteGradeListItem] — grades Alg

After (Context API)

L [ScoreProvider] =<} Al
[StudentWritePage] » useScore()
[WriteGrade] » useScore()
[WriteGradelListItem] » useScore()

https://github.com/EntryCNS/DIA
https://trydgsw.com

Why React Context APl over Redux/Zustand
- Project requirements were simple ("share form data across pages"), not requiring Redux's
action/reducer structure or Zustand's selector-based architecture

- Low state change frequency meant Redux/Zustand's granular state separation wasn't needed;
Context API provided sufficient performance

Side Project

ColorVerse Jun 21-25, 2025

Color Palette Recommendation Service

Key Responsibilities ——
- Express.js server implementation - -
A il Nl
Tech Stack A1'1aan
(React) (styled-components) (Express.js) (OpenAI API) T
(il EEEE
References m
Source Code: https://github.com/kwondongwoo0424/ColorVerse m e ——
Notion Docs: https://buly.kr/GvoBKjO e
LT

Main interface
Overview

A web service that helps designers and developers quickly establish consistent color systems and
discover harmonious color combinations with Al assistance.

Team

Solo project

Key Learnings

RESTful API Server with Express.js
- Integrated OpenAl API via /api/chat POST endpoint
- Implemented frontend-backend communication with CORS configuration

OpenAl API Integration & Prompt Engineering
- Integrated GPT-3.5-turbo model using official OpenAl Node.js SDK (openai)
- Implemented complete API flow: authentication - request composition - response handling

http
REST API

EXPress Jg

OpenAl
SDK

@ OpenAl

https://github.com/kwondongwoo0424/ColorVerse
https://buly.kr/GvoBKj0

Side Project

Flick May 5-20, 2025

Digital Currency-Based Real-Time Transaction and Settlement Platform for School Festival Booth Operations

Key Responsibilities
- Admin page development & . .
Tech Stack

(Next.js) (tailwind CSS) (TypeScript)

EREES

oooooooooooooooooo

References Flick Admin Dashboard Page
Web Source Code: https://github.com/EntryCNS/flick-web

Overview

Flick is a point-based transaction service designed for payments at on-campus festival booths.

The previously developed v1, created by senior students, had several usability issues

related to its QR code payment flow.

To address these limitations and enhance the overall user experience, we newly developed Flick v2.

Team

5 members total
Frontend: 2 (including myself) | Backend:2 | Full-Stack: 1
My Role: Frontend Developer

Web Development

Developed a real-time booth ranking system

- Built a real-time revenue ranking visualization using Chart.js and
WebSocket

- Implemented WebSocket reconnection logic to ensure stable and ——
reliable real-time data communication

Admin Ranking Page
Key Learnings

Codebase Integration and Management Efficiency ¢ frlf_‘ick—web
¥ app
Adopted a Turborepo- and pnpm Workspace-based monorepo |: @ admin/ #
_‘r-place/ #
- @repo/ui: Centralized shared components to eliminate code @ packages/

duplication
- pnpm hard links: Reduced node_modules storage usage

- workspace:* protocol: Automated dependency management
across packages Flick-web Project Structure

B eslint-config/
¥ typescript-config/
B turbo.json

[Wui/ # 28 HzdE

-> Gained hands-on experience achieving both productivity and consistency in a
multi-project environment

https://github.com/EntryCNS/flick-web

External Project Contributions

Legacy (legacy-web)

Overview & Project Introduction

Legacy-web is a web and mobile-based learning service developed with the goal of teaching
Korean culture and history through games.

The project involved a total of seven members, with the web team consisting of two developers.
As an external contributor, | identified areas for improvement in code quality and security and
contributed accordingly.

Contribution

Refactoring of the OAuth button component
Issues Identified

- Google and Apple login buttons were componentized, while the Kakao login button was
implemented directly within a page

- This caused inconsistency in the OAuth button structure and reduced maintainability and
reusability
Improvements Implemented

- Extracted the Kakao login button into a dedicated component
- Unified the component structure to match existing OAuth login buttons

Results

- Achieved structural consistency across OAuth login buttons
- Improved Ul component reusability
- Enhanced maintainability and overall developer experience (DX)

References

Pull Request: https://github.com/TeamDetail/legacy-web/pull/75
Repository: https://github.com/TeamDetail/legacy-web

https://github.com/TeamDetail/legacy-web/pull/75
https://github.com/TeamDetail/legacy-web

External Project Contributions

Starthub (starthub-web)

Overview & Project Introduction

StartHub is an Al-driven service that provides personalized startup support information.
The web application is built with React and TypeScript and is maintained as

a public GitHub repository.

While using the service, | identified a user experience issue and contributed as an external
contributor to address it.

Contribution
Applied optimistic updates to the “Like" feature on the announcement detail page

Issues Identified
- The Ul did not respond until the server returned a response when liking or unliking an
announcement

- Users could not easily confirm whether their click was successfully processed,
leading to poor UX

- The perceived delay became more severe in unstable network conditions

Improvements Implemented

- Utilized React Query's useMutation
- Applied optimistic updates to immediately reflect Ul state changes before server responses
- Implemented rollback logic on request failure to ensure reliability

Results

- Immediate Ul feedback on click, significantly improving user experience
- Smooth and natural interactions even under unstable network conditions
- Delivered a robust like feature that handles both success and failure scenarios

Impact

This improvement meaningfully enhanced the user experience on the announcement detail page
by providing instant feedback after user interactions, greatly increasing perceived
responsiveness.

It was a valuable experience in identifying and solving real user-centric problems, contributing
directly to overall service quality.

References

Pull Request: https://github.com/JinlnSaDaeCheonMyeong/starthub-web/pull/199
Repository: https://github.com/JinlnSaDaeCheonMyeong/starthub-web

https://github.com/JinInSaDaeCheonMyeong/starthub-web/pull/199
https://github.com/JinInSaDaeCheonMyeong/starthub-web

Certifications & Others

23rd TOPCIT (Test of Practical Competency in ICT) - 527 points (Level 3) May 24, 2025

TOEIC Bridge - 76

Awards

3rd Place, 2025 ITCE Project Competition

Academic Excellence Award in Physical Education

Activities

SW Meister High School Joint Hackathon Participant
FIX 2025 Korea ICT Convergence Expo - Booth Operator
School Software Vibe Coding Hackathon Participant

Narshar Project Participant
- Sync Desktop

1:1 Native English Online Program
Library Committee Head

Admissions Interview Volunteer
Narshar Project Participant

School Software Hackathon Participant
1:1 Native English Online Program
Coding Test Competition Participant
Smarteen App Challenge Participant
CNS Programming Club Member

Dec 23, 2024

Oct 24, 2025
Jul 22, 2025

Nov 5-7, 2025

Oct 22-25, 2025

Jul 15-16, 2025

Mar 17 - Oct 25, 2025

May 13 - Dec 23, 2025 (Ongoing)
Dec 2024 - Present

Oct 25, 2024

Aug 20 - Dec 26, 2024

Jul 17-18, 2024

May 8, 2024 - Jan 8, 2025

Apr 17,2024

Apr 2,2024

Mar 14, 2024 - Present

Thank you for taking the time to review my portfolio.
I'm still learning and growing, but I'm committed to becoming

a better developer every single day.

